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This paper presents a semi-empirical formula for predicting the noise spectra of axial flow
fans in a free field. The basic assumption made in deriving this formula is that sound
radiation from an axial flow fan in a free field is primarily due to the fluctuating pressure
exerted on the fan blade surface. This fluctuating pressure is correlated to the lift force per
unit length acting on the fan blade, and is subsequently approximated by pressure pulses
that decay both in space and time. Accordingly, the radiated acoustic pressure is expressed
in terms of superposition of contributions from these pressure pulses, and the line spectrum
is obtained by taking a Fourier series expansion. To simulate the narrow and broad band
sound spectra, a normal distribution-like shape function is designed which divides the
frequency into consecutive bands centered at the blade passage frequency and its
harmonics. The amplitude of this shape function at the center frequency of each band is
unity but decays exponentially. The decay rate decreases with an increase in the number
of bands. Thus, at high frequencies the narrow bands merge to form broad band-like
spectra. The noise spectra thus obtained are compared with the measured ones from four
different types of axial flow fans running under various conditions, and a favorable
agreement in each case is obtained.
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1. INTRODUCTION

Reduction of cooling fan noise has become an increasingly urgent task in the automotive
industries as the requirements for passenger compartment comfort increase and other
vehicle components such as the engine, exhaust system, etc., are made quieter. To reduce
fan noise in the most cost-effective manner, it is necessary to incorporate the component
of noise reduction into the design stage. For this purpose, one must develop an engineering
model that will allow design engineers to estimate noise level given characteristic
dimensions and working conditions such as speed, required flow rate (CFM value), etc.,
of an axial flow fan.

The fundamental theory that governs aerodynamic sound radiation was outlined by
Lighthill [1] more than four decades ago. Since then extensive studies of sound radiation
from axial flow fans or rotors in a free field have been carried out, for example, by Sharland
[2], Van Niekerk [3], Filleul [4], Doak and Vaidya [5], Ffowcs Williams and Hawkings [6],
Lowson Ollerhead [7], Wright [8, 9], Mugridge [10, 11], Chandrashekhara [12–14], Barry
and Moore [15], Hubbard et al. [16], Morfey and Tanna [17], Morfey [18–20], Tam [21],
Homicz and George [22], Amiet [23, 24], Longhouse [25, 26], Fukano et al. [27, 28], George
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and Kim [29], Farassat and Succi [30], Greeley and Kerwin [31], Greeley [32], Eversman
et al. [33], Farassat et al. [34], etc. (The above list of references can be extended, with many
equally important works included.)

Because of the complexity of this problem, closed-form solutions to sound radiation
from axial flow fans or rotors cannot be found. Therefore the majority of previous studies
have focused on a particular noise generation mechanism, such as the fluctuating forces
exerted on the medium by the blade, vortex shedding from the trailing edge, etc. Typical
examples are given by Lowson and Ollerhead [7], Wright [8, 9], and Farassat and Succi
[30], who predicted the discrete line spectra of rotors in a free field due to steady and
unsteady fluctuating forces and thickness effect. Homicz and George [22] considered
unsteady aerodynamics and distributed loading on the rotor surface based on a
cross-correlation, and obtained both the discrete frequency and broad band acoustic
signatures generated by aerodynamic rotors. However, when Homicz and George’s
formula was applied to a low speed axial flow fan, both the discrete frequency and broad
band noise level were greatly underestimated. Greeley [31] used the strip theory and derived
a formula for estimating the broad band sounds due to vortex shedding from the leading
and trailing edges of a rotor. Results showed that when the flow field into the rotor section
was specified either through experiment or estimation, the calculated broad band sound
levels agreed well with the measured ones.

These examples demonstrate that even with the progress made over the past four
decades, the problem of predicting the acoustic signatures of an axial flow fan is still not
completely solved. In many engineering applications, one must still rely on some empirical
formulae [35] to estimate the total sound power level for given characteristics and operating
conditions such as the static pressure drop, the CFM value, etc., to optimize the designs
of axial flow fans. Oftentimes, the total sound power level is not enough to characterize
the noise performance of an axial flow fan. This is because an axial flow fan has both
narrow and broad band components, and in general, the narrow band sounds are more
annoying than the broad band sounds. Therefore in order to improve the noise
performance of an axial flow fan, it is necessary to be able to predict the spectrum, given
the fan characteristic parameters.

The objective of the present paper is to present an engineering model for estimating the
noise spectrum of an axial flow fan in a free field. Development of this model is based
on the assumption that the radiated acoustic pressure from an axial flow fan is primarily
due to the fluctuating pressures exerted on the surrounding fluid medium by the fan blades.
These fluctuating pressures are correlated to the lift force per unit length acting on the
blade surface calculated by the Blasius theorem over a Joukowski airfoil [36], and
subsequently approximated by a series of impulses which decay exponentially in both time
and space. Once the fluctuating pressures are specified, the noise spectrum can be
determined by taking a Fourier series expansion. To simulate the narrow and broad band
sounds, a shape function is designed which breaks the frequency into consecutive bands
centered at the blade passage frequency and its harmonics. The amplitude of this shape
function at the center frequency of each band is unity, but decays exponentially as the
frequency deviates from the center frequency. The decay rate decreases with an increase
in the number of bands. Thus at high frequencies the narrow bands merge to form broad
band-like spectra. To validate this engineering model, the calculated noise spectra are
compared with the measured ones from four different types of axial flow fans running
under various conditions.

It is emphasized here that the present formula has been developed for an axial flow fan
in a free field where the incident flow is axisymmetric as shown schematically in Figure 1.
When the fan is installed in an assembly with a shroud, a radiator and a condenser inside
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an engine compartment, the incident flow is not only asymmetric, but also turbulent.
Therefore the characteristics of resulting noise radiation will be different, and a different
formula must be developed to describe the noise spectrum. While the present formula is
valid for the simplest flow condition, it nevertheless provides the guidelines for selecting
a quiet axial flow fan, which is the first step toward reducing the passenger compartment
noise level.

2. THEORETICAL DEVELOPMENT

The mechanisms of sound radiation from rotors have been well documented by Lowson
and Ollerhead [7], Wright [8], Hubbard et al. [16], Morfey [19], and more recently by
Magliozzi et al. [37]. Since it is difficult to describe all of these mechanisms mathematically,
and impractical to incorporate all of them into a single model, one chooses to focus
attention on the one that influences the predominant feature of the noise spectrum of an
axial flow fan in a free field, namely, the fluctuating forces exerted on the fluid medium
by the fan blade. This approach is justifiable because the authors intention is to develop
an engineering model to estimate the most important feature of the noise spectrum, but
not to seek an exact description of the acoustic signature from an axial flow fan. With this
basic assumption, one can write the radiated acoustic pressure from an axial flow fan in
the following way [7, 8]:

sp=−
1
4p

9x · $F�
R%t

, (1)

where sp stands for the radiated acoustic pressure, F� represents the force exerted on the
fluid by the rotating blades, R= = x� − y� = is the distance between an observer at x� and the
source described at y� , 9x implies a gradient taken with respect to x� -coordinates, and the
square bracket []t indicates that quantities inside are to be evaluated at the retarded time
t= t−R/c.

Equation (1) shows that if F� is specified, then the radiated acoustic pressure sp is
completely determined. The determination of the surface force has been the subject of
extensive studies in the past [7–9, 17–20].

Figure 1. Schematic of an axial flow fan in a free field.
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Figure 2. Schematic of the incident flow on an airfoil.

To simplify the problem, one assumes that acoustic radiation is primarily caused by the
component of the surface force normal to the blade surface Fn . The contribution from the
tangential component of the surface force Ft is negligible compared to that of Fn . Clearly,
this assumption will result in a formulation which is valid for an observer near the fan
axis region, since Ft acts in the plane of rotation (exerting a torque on the blades), thus
having a negligible effect on acoustic radiation in the axial direction. The restriction
imposed on the resulting formulation will have a minimum impact on its utility because
one is concerned with prediction of noise levels at the position of the driver’s ear inside
a vehicle, which is around the fan axis region. Hence in calculating the radiated acoustic
pressure, one only needs consider Fn , namely, the distribution of the normal component
of the surface force Fn .

Fn =gg pn� · dA� , (2)

where p is the fluctuating pressure acting on the blade surface area A and n� is the unit
normal vector on the surface.

Since an exact description of the pressure fluctuation p on the blade surfaces for a three
dimensional flow cannot be obtained, one chooses to write it in terms of the dynamic
pressure multiplied by a constant, an idea borrowed from the description of pressure
fluctuations of turbulent flow over an infinite flat plate [2]:

p= jq, (3)

where q= rV 2/2 is known as the dynamic pressure head, V is the mean flow speed, and
j is a constant. The commonly accepted value for j for an infinite flat plate is between
0·006 [2] and 0·01 [38].

Obviously equation (3) cannot be applied directly to an axial flow fan, because the blade
surface area is of a finite extent and its edge effect is non-negligible. In what follows the
development of an expression for q is described and it is shown how it is correlated to
the lift force per unit length acting on the blade surface.

In aerodynamics, it has been shown that the thrust per unit length acting on a Joukowski
airfoil (see Figure 2) can be calculated by using the Blasius theorem [36]

Fx −iFy =i
r

2 GC 0dw
dz1

2

dz, (4)

where w represents the complex potential of the airflow and dw/dz is the complex
fluid velocity
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dw
dz

=
dw
dz1

dz1

dz2

dz2

dz3
, (5)

where z1, z2 and z3 for a Joukowski airfoil are given in reference [36]. With these functions
specified, one can calculate a distribution of the mean squared value of velocity = dw/dz =2
along a streamline adjacent to the surface of a Joukowski airfoil (see the solid line in
Figure 3). Calculations of = dw/dz =2 suggest that the fluctuating force exerted on a
Joukowski airfoil may be approximated by a pulse that decays exponentially along the
chord (see the dashed line in Figure 3). This implies that one could use a shape function
that decays exponentially along the blade chord to describe the pressure fluctuation p. In
the form of equation (3), this is equivalent to writing q as

q= q0 e−as, (6)

where q0 represents the peak amplitude of the pressure pulse, a indicates its decay rate,
s= rf is the distance along the chord at radius r of the airfoil, and f is the azimuthal
angle.

The quantity q0 in equation (6) can be correlated to the magnitude of the thrust by
equating the integral of q over the blade chord to the lift force per unit length FL ,

g
s0

0

q ds=g
s0

0

q0 e−as ds=FL , (7)

where s0 =2pr/B is the circumference wavelength measured at any radius r, and B is the
blade number. Since q0 is independent of the distance s along the chord, it can be factored
out of the integral sign and the result is

q0 = aFL /(1−e−as0), (8)

where FL is given by [36]

FL =CL CrV 2
0 /2, (9)

Figure 3. Pressure distribution along the streamline immediately adjacent to the surface of a Joukowski airfoil.
Solid line, theory; dashed line, approximation.
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Figure 4. Schematic of the chord-wise distribution of pressure pulses.

where CL = a0 sin (c− b) is the lift coefficient, c, b, and C represent the angle of the inflow
direction, the blade angle, and the chord length at a particular cross section of the blade,
respectively, r is the density of the fluid medium, V0 is the magnitude of the incoming mean
flow velocity, and a0 is the lift-curve slope. The commonly accepted value for a0 is 5·73
[39].

Assume now that the radiated acoustic pressure is expressible as a superposition of
pressure pulses emitted from each section of the blade surface. Then for an observer in
a fixed co-ordinate system in space (see Figure 4), it is seen that: (1) each pressure pulse
has a different emission time as a blade rotates in a circular disk, (2) each pressure pulse
decays in time and in azimuth, and (3) each pressure pulse is periodic in time and in
azimuth, the period in time being t0 = f −1

0 and the period along the azimuth being
s0 =2pr/B, where f0 =BN/60 is the blade passage frequency with N being the fan speed
in revolution per minute.

With this assumption the shape function q can be rewritten as

q=
aFL

(1−e−as0)
e−arv(t− l1 t0) e−ar(f− l2 f0), l1,2 =0, 1, . . . , to (B−1), (10)

where f is the azimuthal angle and f0 =2p/B.
Physically, the exponential function e−arv(t− l1 t0) in equation (10) represents the decay of

the pressure pulse in time at a fixed point on the blade surface, and e−ar(f− l2 f0) represents
the decay of the pressure pulse along the azimuth at a fixed time t.

The concept of describing the radiated acoustic pressure by superimposing contributions
of the pressure pulses emitted from the blade surface is not new [9, 34, 37]. The novelty
here is the correlation of the shape function of the pressure pulse q to the thrust, or more
precisely, to the lift force per unit length FL . Since only a small fraction of the thrust given
by equation (4) is converted to acoustic radiation, it is appropriate to multiply q by a
dimensionless coefficient.

In reference [9], Wright shows that the total radiation from the entire source distribution
of a rotating blade is expressible as the chord and span spectrum functions, respectively.
The chord spectrum function is shown to depend on the chord solidity, namely the ratio
of the blade effective chord to the circumference measured at the blade effective radius,
which is usually defined as 80% of the blade tip radius. In the present paper, one chooses
to define a solidity of the blade surface jb , which is the ratio of the blade surface area to
the total blade disk area.
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jb =B g
rt

rh

C cos b dr/p(r2
t − r2

h ), (11)

where rt and rh represent the tip and hub radii of the blade, respectively.
The reason for selecting jb rather than the chord solidity is to avoid any ambiguity in

selecting the blade effective radius. The parameters involved in jb are well defined. One
way of defining the coefficient j for q then is to set it to be

j=1− jb =0p(r2
t − r2

h )−B g
rt

rh

C cos b dr1>p(r2
t − r2

h ), (12)

which represents the ratio of the void area to the total blade disk area. Results show that
such a coefficient can yield satisfactory results for fans with straight blades. For a fan with
a back-skewed blade, however, this coefficient tends to yield a line spectrum whose
amplitude decays at a rate slower than the measured one. Analyses of the experimental
data indicate that the decay rate of the line spectrum of a back-skewed fan is proportional
to the frequency, as well as to (1− jb ). By trial and error one obtains the following unified
empirical expression for j:

j=[0·967(1− jb )−0·294]/[1−0·0217(1− jb ) (f/f0) sin (gh − g)], (13)

where f is the frequency of the radiated acoustic pressure, and gh and g represent the blade
alignment angles at the hub and at any radius, respectively (see Figure 5). The value of
g is defined as negative for a blade skewed backward and positive for a blade skewed
forward. For a straight blade, the alignment angle is identically zero, gh = g0 0. For an
inclined but straight blade, the values of gh and g are non-zero but nevertheless are the
same. In either case, gh − g0 0, and therefore the denominator of j reduces to unity. It
is shown in section 5 that the spectra thus obtained by using the coefficient j given by
equation (13) compare well with the measured ones for both straight and skewed fans.

Substituting equations (10) and (13) into equation (3) thus yields an approximate
pressure fluctuation p acting on the fan blade surface. Once p is specified, the normal
component of the surface force Fn can be determined by equation (2), and the radiated
acoustic pressure can be calculated by equation (1).

Figure 5. Schematic of the blade alignment angle at hub gh and that at any radius g.
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Figure 6. Experimental setup of an axial flow fan inside a fully anechoic chamber.

3. MODELLING THE NOISE SPECTRUM

To obtain the noise spectrum from an axial flow fan, one expands the shape function
q given by equation (10) in terms of a Fourier series with respect to both time and azimuth:

q=
aFL

(1−e−2par/B)
s
a

j=0

aj cos (2pjBf0 t) s
a

k=0

bk cos (kBf), (14)

where the coefficients aj and bk are given by (Burington [42])

aj =
(2− d0j)

t0 g
t0

0

e−2pf0 art cos 02pjt
t0 1 dt1(2− d0j )B

2p

(ar) (1−e−2par/B)
(ar)2 + ( jB)2 , (15a)

Figure 7. Test fans type A (upper left), type B (upper right), type C (lower left) and type D (lower right).
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Figure 8. Comparison of the calculated and the measured noise spectra of type A fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 1706 r.p.m., u=90°. Solid line, measurement: dashed
line, prediction.

bk =
(2− d0k)

s0 g
s0

0

e−arf cos 02pkf

f0 1 df1(2− d0k )B
2p

(ar) (1−e−2par/B)
(ar)2 + (kB)2 , (15b)

where djk is the Kronecker delta.
Substituting equations (13) and (14) into equation (2) then yields

Fn =gg jaFL

(1−e−2par/B)
s
a

j=0

aj cos (2pjBf0 t) s
a

k=0

bk cos (kBf)n� · dA� . (16)

Accordingly, the Fourier series expansion of the radiated acoustic pressure can be written
as

sp=−
1
4p

1

1n $Fn

R%t

=−
1
4p

1

1n gg $ jaFL

R(1−e−2par/B)
s
a

j=0

aj cos (2pj Bf0 t) s
a

k=0

bk cos (kBf)%t

n� · dA� . (17)

T 1

The peak and total SPL values of type A fan at 3 ft along the axis at 1706 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 256 56·8 56·5 −0·2
2 512 53·4 54·9 +1·5
3 768 52·9 52·2 −0·7
4 1024 47·1 50·0 +2·9

Total SPL 0–6400 71·3 dB(A) 71·3 dB(A) 0·0 dB(A)
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Figure 9. Comparison of the calculated and the measured noise spectra of type A fan at a radial distance
R0 =3 ft and 45° with respect to the fan blade cross-section with the fan running at 1706 r.p.m. Solid line,
measurement; dashed line, prediction.

Since Fn is taken to act in the plane normal to the radius vector [8], the derivative 1/1n
in equation (17) can be carried out analytically and the result is

sp=gg R0 jaFL (sin c cos u sin f+cos c sin u)
4pR2 (1−e−2par/B)

× s
a

k=0

bk cos (kBf) Re $ s
a

n=0

aj 0i 2pjBf0

c
−

1
R1 e−i2pjBf0 (t−R/c)%n� · dA� , (18)

where R and R0 are the distances between the source and the center of the blade disk to
the receiver, respectively, and u is the polar angle (see Figure 1).

It can be shown that the integral in equation (18) leads to a series of Bessel functions
in the azimuth. To simplify numerical computations, it is assumed that the distance
between the measurement point and the blade surface is much larger than the radius of

T 2

The peak and total SPL values of type A fan at 3 ft, 45° and at 1706 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 256 54·8 53·5 −1·3
2 512 52·6 51·9 −0·7
3 768 48·5 49·3 +0·8
4 1024 46·7 47·0 +0·3

Total SPL 0–6400 68·5 dB(A) 68·3 dB(A) −0·2 dB(A)
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Figure 10. Comparison of the calculated and the measured noise spectra of type A fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 1978 r.p.m., u=90°. Solid line, measurement; dashed
line, prediction.

the fan blade section, namely R�r. Under this condition, R1R0 − r cos f cos f. Hence,
one can write

1/R1 1/R0, e−i2pjBf0 (t−R/c) 3 e−i2pjBf0 [t−(R0 − r cos f cos f)/c]. (19a, b)

Substituting equations (19) into equation (18) yields

sp=g
2p

0 g
rt

rh

jaFL (sin c cos u sin f+cos c sin u)
4pR0

(1−e−2par/B)

× s
a

k=0

bk cos (kBf) Re 6 s
a

j=0

aj 0i 2pjBf0

c
−

1
R01 e−i2pjBf0 [t−(R0 − r cos u cos f)/c]7r dr df.

(20)

Equation (20) can be further simplified if the observation point is close to the fan axis,
i.e., u:90°. Under this condition, cos u:0, sin u:1, and R:zR2

0 + r2. The integration
with respect to f in equation (20) can now be carried out separately. Since f varies from

T 3

The peak and total SPL values of type A fan at 3 ft along the axis at 1978 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 296 58·8 60·2 +1·4
2 592 58·0 58·7 +0·7
3 888 51·5 56·0 +4·5
4 1184 51·8 53·8 +2·0

Total SPL 0–6400 74·1 dB(A) 75·6 dB(A) +1·5 dB(A)
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Figure 11. Comparison of the calculated and the measured noise spectra of type B fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 2684 r.p.m., u=90°. Solid line, measurement; dashed
line, prediction.

0 to 2p, the integration is non-zero only for the k=0 term. Hence

sp= s
a

j=0

Re (SPj ei2pjBf0 t), (21)

where SPj represents the spectrum of the radiated acoustic pressure,

SPj =g
rt

rh

jB2FL ar cos c sin u

8p2R0
(1−e−2par/B) 0i 2pjBf0

c
−

1
R01

×
(2− d0j ) ei2pjBf0zR2

0 + r2/c

(ar)2 + (jB)2 dr, (22)

where a represents the decay rate of the pressure pulse acting on the blade surface, which
is determined via a curve fitting of the experimental data. For the present empirical model,
a=27·4 seems to yield satisfactory results for all fans under all the test conditions.

Equation (21) thus obtained yields a discrete line spectrum. Experimental data show that
for an axial flow fan in a free field, the noise spectrum is composed of the narrow bands
centered at the blade passage frequency and its harmonics. These narrow bands are

T 4

The peak and total SPL values of type B fan at 3 ft, along the axis at 2684 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 400 58·0 60·4 +2·4
2 800 57·3 58·0 +0·7
3 1200 54·2 55·4 +1·2
4 1600 50·9 53·3 +2·4

Total SPL 0–6400 75·3 dB(A) 75·9 dB(A) +0·6 dB(A)
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Figure 12. Comparison of the calculated and the measured noise spectra of type B fan at a radial distance
R0 =3 ft and 45° with respect to the fan blade cross section with the fan running at 2684 r.p.m. Solid line,
measurement; dashed line, prediction.

predominant in the low frequency regime but decrease with increasing frequency, and
gradually blend into broad band sounds at high frequencies. The reasons for the presence
of these narrow bands rather than discrete lines are due to random fluctuations in the fan
speed as well as in the fluctuating pressures acting on the blade surface. Since it is not
possible to derive an explicit formulation to describe these random phenomena, one
chooses to devise a normal distribution-like shape function Hj to simulate the narrow
bands:

Hj ( f )=01− b f− jf0

f0 b1H[ f−( j−1) f0]H[( j+1) f0 − f ] e−((f− jf0)/f0 sj )2, (23)

where H is the Heaviside step function

H( f− jf0)=601 if fQ jf0

if fe jf0
. (24)

These step functions are used to divide the frequency into consecutive bands whose
center frequencies coincide with the blade passage frequency and its harmonics. The
amplitude of Hj at the center frequency of each band is unity, but decays exponentially
as the frequency deviates from the center frequency. The decay rate of the jth band is
determined by sj , which is set to be proportional to s0 and which increases with the number
of bands:

sj = js0, (25)

where s0 is a constant. In this way, the widths of the bands increase with frequency and
eventually merge to form a broad band-like spectrum at high frequencies. The larger the
value of s0, the narrower these bands. Numerical calculations indicate that the noise
spectra thus obtained agree well with the measured ones for all the test cases when s0 is
set at 1/5.

Multiplying the line spectrum SPj by the shape function given in equation (23) yields
the following semi-empirical formula for estimating the noise spectrum of an axial flow
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fan in a free field:

sp= s
a

j=0

Re [SPj Hj (f ) e−i2pjBf0 t], (26)

where SPj can be written, with the substitutions of equations (9) and (13) for FL and j,
respectively, as

SPj =g
rt

rh

aa0 rrCB2V2
0 [0·96739(1− jb )−0·2924] cos c sin u sin (c− b)

16p2R0 [1−0·0217(1− jb ) (f/f0) sin (gh − g)]

×(1−e−2par/B) 0i 2pjBf0

c
−

1
R01 (2− d0j) ei2pjBf0zR2

0 + r2/c

(ar)2 + (jB)2 dr, (27)

where V 2
0 =V 2

t +V 2
c =4p2f 2(r2 + k2); here Vt and Vc represent the tangential and axial

components of the incident flow velocity (see Figure 2), respectively, and k is given by

k=CFM/2p2f(r2
t − r2

h ), (28)

where the flow rate, i.e., the CFM value is specified as a design parameter of an axial flow
fan.

All parameters involved in equation (27) are now completely specified.
Equation (27) indicates that the overall shape of the spectrum is controlled by the decay

rate of the pressure pulses a. The solidity of the blade surface jb may affect the shape of
the spectrum in the low frequency regime, while the alignment angle g may affect the
spectrum in the high frequency regime. Undoubtedly, there may be other factors that affect
the spectrum of an axial flow fan. The parameters shown in equation (27) merely represent
the ones that correlate well with present experimental data.

In carrying out the numerical integration in equation (27), the blade is discretized into
M strips of equal width Dr in the radial direction. Contributions of sound radiation from
each strip are then superimposed. A computer program based on this semi-empirical
formula is written in FORTRAN-77.

The input data to this program include: the number of blades B, the speed N and the
corresponding CFM value, the hub and tip radii of the fan blade rh and rt , the blade
alignment angle g, the number of sections to be discretized over the blade surface M, the
chord length C and the corresponding blade angle b at each discretized section, the density
r and the speed of sound c of the medium, and the radial distance R0 and the corresponding
polar angle u of the measurement point with respect to the center of the fan blade cross
section.

The output of the program includes the noise spectrum at the measurement point and
the A-weighted total sound pressure level (SPL) value in decibels. The entire computation
can be completed on a 486 PC within a few seconds of CPU time.

4. EXPERIMENTAL SETUP

Figure 6 shows the test setup for measuring the noise spectrum of an axial flow fan inside
a 12 ft×12 ft×6·5 ft fully anechoic chamber in the Acoustics, Vibration, and Noise
Control Laboratory of Wayne State University. A special stand was designed to hold the
fan. The outer surface of this stand was streamlined to reduce the flow resistivity. The fan
speed was controlled by a digital DC power supplier and the noise spectra were measured
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The peak and total SPL values of type B fan at 3 ft, 45° and at 2684 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 400 55·7 57·4 +1·7
2 800 54·7 55·0 +0·3
3 1200 52·7 52·4 −0·3
4 1600 51·2 50·3 −0·9

Total SPL 0–6400 73·3 dB(A) 72·9 dB(A) −0·4 dB(A)

by a B&K Type 4155 condenser microphone. Data acquisition was controlled by a
computer, and the signals were analyzed by the STAR-ACOUSTICS software.

5. RESULTS

To validate the semi-empirical formula developed in this paper, we tested four different
types of axial flow fans. For proprietary reasons, however, the characteristic dimensions
of these fans have been suppressed and only the generic names type A, B, C, and D were
used (see Figure 7). For each fan design, the noise spectra were measured at different
locations both upstream and downstream under various running conditions. In all cases,
favorable agreements between the calculated and measured noise spectra were obtained.
In what follows, however, we only present representative comparisons, for the sake of
brevity.

5.1.   

The type A fan is a straight-blade, regular-size axial flow engine cooling fan with nine
blades (see Figure 7(a)). Figure 8 demonstrates a comparison of the calculated noise
spectrum (dashed line) and the measured one at three ft, along the axis, in the upstream
direction with the fan running at around 1706 r.p.m. The overall agreement between the
calculated and measured spectra is quite good. In particular, the narrow bands in the low

Figure 13. Comparison of the calculated and the measured noise spectra of type C fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 1811 r.p.m., u=90°. Solid line, measurement; dashed
line, prediction.
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The peak and total SPL values of type C fan at 3 ft along the axis at 1811 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 272 59·2 60·8 +1·6
2 554 48·3 55·4 +7·1
3 816 46·3 52·0 +5·7
4 1088 45·0 49·6 +4·6

Total SPL 0–6400 71·3 dB(A) 70·1 dB(A) −1·2 dB(A)

frequency regime, including the zeroth peak which centers at the shaft frequency, are well
captured by the present empirical formula. Moreover, the widths of these narrow bands
increase with frequency and eventually merge to form broad band-like spectra. However,
some discrepancies between 2000 and 4000 Hz and beyond the 5000 Hz range are noticed.
These discrepancies are most likely caused by the leading edge and trailing edge noises [32]
that are not accounted for by the present formula.

Table 1 summarizes the SPL values for the first four peaks centered at the blade passage
frequency and its harmonics, and the total noise level of 0 to 6400 Hz.

Figure 9 illustrates a comparison of the calculated and measured noise spectra for the
same fan at the same distances, but 45° with respect to the fan blade cross-section in the
upstream direction. It is interesting to note that the present formula still yields good results
at u=45°, even though an approximation of a large value of u (u:90°) in the derivation
has been made. The SPL values for the first four peaks and the total noise level in dB(A)
are given in Table 2.

A comparison of the calculated and measured noise spectra at R0 =3 ft upstream on
axis with the fan running at 1978 r.p.m. is shown in Figure 10. The corresponding SPL
values for the first four peaks and the total noise level are listed in Table 3.

Figure 14. Comparison of the calculated and the measured noise spectra of type C fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 2026 r.p.m., u=90°. Solid line, measurement; dashed
line, prediction.
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The peak and total SPL values of type C fan at 3 ft along the axis at 2026 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 312 57·9 63·3 +6·4
2 624 49·3 59·0 +9·7
3 936 47·8 55·6 +7·8
4 1248 45·5 53·1 +7·6

Total SPL 0–6400 73·5 dB(A) 74·2 dB(A) +0·7 dB(A)

Figure 15. Comparison of the calculated and the measured noise spectra of type D fan at a radial distance
R0 =3 ft along the axis upstream with the fan running at 2252 r.p.m., u=90°. Solid line, measurement; dashed
line, prediction.

5.2.   

The type B fan (see Figure 7) also has straight blades, but with almost half the blade
inclination angles of the type A fan. Calculations of the incident flow angle based on the
given blade inclination angle and camber angle indicate that the type B fan is in the stall
region. When this happens, the lift coefficient is greatly reduced. According to Freris [39],
the value of CL may decrease up to 50%. Here CL =0·6a0 sin (c− b). Namely, a 40% drop
in the lift coefficient as compared with the non-stalled situation. Substituting CL into
equation (27) then yields the estimated noise spectrum.

T 8

The peak and total SPL values of type D fan at 3 ft along the axis at 2252 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 304 63·4 63·6 +0·2
2 608 55·5 58·3 +2·8
3 912 51·9 54·9 +3·0
4 1216 51·2 52·4 +1·2

Total SPL 0–6400 77·1 dB(A) 73·4 dB(A) −3·7 dB(A)
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Figure 16. Comparison of the calculated and the measured noise spectra of type D fan at a radial distance
R0 =3 ft and 45° with respect to the fan blade cross-section with the fan running at 2276 r.p.m. Solid line,
measurement; dashed line, prediction.

Figure 11 compares the calculated and the measured noise spectra from the type B fan
at R0 =3 ft upstream along the axis with the fan running at 2684 r.p.m. As in the case
of the type A fan, the narrow bands in the low frequency regime, including the zeroth band
centered at the shaft frequency, are well captured. In particular, in this case a favorable
agreement in the mid to high frequency ranges is also obtained. Table 4 summarizes the
SPL values for the first four narrow bands and the corresponding total SPL in dB(A).

Figure 12 shows a comparison of the calculated and measured noise spectra for the same
fan running at the same speed, but with R0 =3 ft upstream and u=45° with respect to
the fan blade cross-section. Detailed comparisons of the SPL values are listed in Table 5.

5.3.   

The type C fan is a nine-blade engine cooling fan with a back-swept angle. Using the
company supplied fan’s characteristic dimensions, geometries, and required working
conditions, the resulting noise spectra were estimated. Figure 13 exhibits a comparison of
the calculated and measured noise spectra at R0 =3 ft along the axis upstream with the
fan running at 1811 r.p.m. In this case, the SPL values for the second, third, and fourth
narrow bands are overestimated, while the noise level for the broad band sounds between
1700 and 2400 Hz range is underestimated. These broad band sounds are caused by the

T 9

The peak and total SPL values of type D fan at 3 ft, 45° and at 2276 r.p.m.

Frequency Measured SPL Calculated SPL Difference
Peak Number (Hz) (dB(L)) (dB(L)) (dB(L))

1 304 58·9 60·6 +1·7
2 608 51·0 55·2 +4·2
3 912 49·9 51·9 +2·0
4 1216 48·6 49·4 +0·8

Total SPL 0–6400 72·5 dB(A) 70·4 dB(A) −2·1 dB(A)
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trailing edge noises that are not accounted for in the present engineering model. It is
interesting to note, however, that despite large discrepancies in the narrow and broad band
sounds, the difference in the total SPL value is relatively small (see Table 6). This means
that the total radiated acoustic power is more or less captured by the present model.

A similar trend is observed when type C fan is running at other working conditions.
Figure 14 demonstrates a comparison of the calculated and measured noise spectrum at
the same measurement point but running the designed speed. The discrepancies of the SPL
values for the first four narrow bands and the total A-weighted level are summarized in
Table 7.

5.4.   

The type D fan (see Figure 7) is an eight-blade, back swept-type fan with smaller overall
dimensions than the type C fan. Using the company supplied data, the resulting noise
spectra were calculated. Figure 15 displays a comparison of the calculated spectrum
with the measured one at R=3 ft along the axis upstream with the fan running at the
designed speed. In this case, the broad band sounds over the 1700 to 4000 Hz range are
greatly underestimated. Nevertheless, the SPL values of the first four narrow band sounds
are captured (see Table 8).

Figure 16 shows a comparison of the calculated and measured noise spectra at R=3 ft
upstream at 45° with respect to the fan blade cross-section. The corresponding SPL values
for the first four narrow bands and the A-weighted total level are listed in Table 9.

6. CONCLUDING REMARKS

The semi-empirical formula developed in this paper seems capable of simulating both
narrow and broad band sounds of the spectra for the tested axial flow fans in a free field.
In particular, it yields more accurate results for a straight blade fan than for a back-swept
fan. The reason for that could be due to the fact that a back-swept blade generates more
vortex shedding from the trailing edges than a straight blade fan, and the mechanisms of
trailing edge noises are not accounted for in this formula. Nevertheless, it can still provide
a useful guideline for assessing the noise performance of an axial flow fan in a free field.
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